Last updated: 2023-09-16

Checks: 7 0

Knit directory: Mouse_endometrial_transcriptome_2023/1_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 18c6463. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  .gitignore
    Untracked:  0_data/RDS_objects/DT.rds

Unstaged changes:
    Modified:   0_data/RDS_objects/dge.rds
    Modified:   0_data/RDS_objects/enrichGO.rds
    Modified:   0_data/RDS_objects/enrichGO_sig.rds
    Modified:   0_data/RDS_objects/fc.rds
    Modified:   0_data/RDS_objects/lfc.rds
    Modified:   0_data/RDS_objects/lmTreat.rds
    Modified:   0_data/RDS_objects/lmTreat_all.rds
    Modified:   0_data/RDS_objects/lmTreat_sig.rds
    Modified:   0_data/RDS_objects/pub.rds
    Modified:   2_plots/de/pval_1.05.svg
    Modified:   2_plots/de/pval_1.1.svg
    Modified:   2_plots/de/pval_1.5.svg
    Modified:   2_plots/go/bp_dot_1.05.svg
    Modified:   2_plots/go/bp_dot_1.5.svg
    Modified:   2_plots/go/cc_dot_1.05.svg
    Modified:   2_plots/go/cc_dot_1.5.svg
    Modified:   2_plots/go/mf_dot_1.5.svg
    Modified:   2_plots/go/upset_1.05.svg
    Modified:   2_plots/go/upset_1.1.svg
    Modified:   2_plots/go/upset_1.5.svg
    Modified:   2_plots/ipa/Cell-To-Cell Signaling.svg
    Modified:   2_plots/ipa/diseaseAndFunction.svg
    Modified:   2_plots/ipa/pathways.svg
    Modified:   2_plots/kegg/kegg_dot_1.05.svg
    Modified:   2_plots/kegg/kegg_dot_1.1.svg
    Modified:   2_plots/kegg/kegg_dot_1.5.svg
    Modified:   2_plots/kegg/upset_kegg_1.05.svg
    Modified:   2_plots/kegg/upset_kegg_1.1.svg
    Modified:   2_plots/kegg/upset_kegg_1.5.svg
    Modified:   2_plots/qc/PCA_IntvsCont.svg
    Modified:   2_plots/qc/counts_after_filtering_3_3.svg
    Modified:   2_plots/qc/counts_before_after_filtering_3_3.svg
    Modified:   2_plots/qc/counts_before_filtering.svg
    Modified:   2_plots/qc/library_size.svg
    Modified:   2_plots/reactome/react_dot_1.05.svg
    Modified:   2_plots/reactome/react_dot_1.1.svg
    Modified:   2_plots/reactome/react_dot_1.5.svg
    Modified:   2_plots/reactome/upset_react_1.05.svg
    Modified:   2_plots/reactome/upset_react_1.1.svg
    Modified:   2_plots/reactome/upset_react_1.5.svg
    Modified:   3_output/enrichGO_sig.xlsx
    Modified:   3_output/enrichKEGG_all.xlsx
    Modified:   3_output/enrichKEGG_sig.xlsx
    Modified:   3_output/lmTreat_all.xlsx
    Modified:   3_output/lmTreat_fc1.5_voom2_all_fdr.xlsx
    Modified:   3_output/lmTreat_sig.xlsx
    Modified:   3_output/reactome_all.xlsx
    Modified:   3_output/reactome_sig.xlsx

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (1_analysis/reactome.Rmd) and HTML (docs/reactome.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 18c6463 Ha Manh Tran 2023-09-16 Added KEGG copyright permission and changed kable
html b44640a Ha Manh Tran 2023-01-23 Build site.
Rmd eb10bef Ha Manh Tran 2023-01-22 workflowr::wflow_publish(here::here("1_analysis/*.Rmd"))
html 8c9178d tranmanhha135 2023-01-21 added png
html d578f46 Ha Manh Tran 2023-01-21 Build site.
html 159f352 tranmanhha135 2023-01-21 adding for pathview
Rmd 4d51a4e tranmanhha135 2023-01-20 test png
html 4d51a4e tranmanhha135 2023-01-20 test png
html 691cf34 Ha Manh Tran 2023-01-20 Build site.
Rmd 7f6bab2 Ha Manh Tran 2023-01-20 workflowr::wflow_publish(here::here("1_analysis/*.Rmd"))
Rmd b6cf190 tranmanhha135 2023-01-19 quick commit
Rmd 3119fad tranmanhha135 2022-11-05 build website
html 3119fad tranmanhha135 2022-11-05 build website

Data Setup

# working with data
library(dplyr)
library(magrittr)
library(readr)
library(tibble)
library(reshape2)
library(tidyverse)

# Visualisation:
library(kableExtra)
library(ggplot2)
library(grid)
library(pander)
library(cowplot)
library(pheatmap)
library(DT)

# Custom ggplot
library(ggbiplot)
library(ggrepel)
theme_set(theme_light())

pub <- readRDS(here::here("0_data/RDS_objects/pub.rds"))
DT <- readRDS(here::here("0_data/RDS_objects/DT.rds"))


# Bioconductor packages:
library(edgeR)
library(limma)
library(Glimma)
library(clusterProfiler)
library(org.Mm.eg.db)
library(enrichplot)
library(ReactomePA)

Import DGElist Data

DGElist object containing the raw feature count, sample metadata, and gene metadata, created in the Set Up stage.

# load DGElist previously created in the set up
dge <- readRDS(here::here("0_data/RDS_objects/dge.rds"))
fc <- readRDS(here::here("0_data/RDS_objects/fc.rds"))
lfc <- readRDS(here::here("0_data/RDS_objects/lfc.rds"))
lmTreat <- readRDS(here::here("0_data/RDS_objects/lmTreat.rds"))
lmTreat_sig <- readRDS(here::here("0_data/RDS_objects/lmTreat_sig.rds"))

Reactome

FC=1.05

p=1

Enriched pathways

reactome=list()
reactome_all=list()
reactome_sig=list()
for (i in 1:length(fc)) {
  x <- fc[i] %>% as.character()
  
  reactome[[x]] <- enrichPathway(gene = lmTreat_sig[[x]]$entrezid, organism = "mouse", pvalueCutoff = 0.05, pAdjustMethod = "fdr", readable = T)

reactome_all[[x]] <- reactome[[x]]@result
reactome_sig[[x]] <- reactome_all[[x]] %>% dplyr::filter(p.adjust <= 0.05) %>% 
  separate(col = BgRatio, sep = "/", into = c("Total", "Universe")) %>%
  dplyr::mutate(
    logFDR = -log(p.adjust, 10),
    GeneRatio = Count / as.numeric(Total))%>%
    dplyr::select(c("Description", "GeneRatio", "pvalue", "p.adjust", "logFDR", "qvalue", "geneID", "Count"))

 # at the beginnning of a word (after 35 characters), add a newline. shorten the y axis for dot plot 
  reactome_sig[[x]]$Description <- sub(pattern = "(.{1,55})(?:$| )", 
                                       replacement = "\\1\n", 
                                       x = reactome_sig[[x]]$Description)
  
  # remove the additional newline at the end of the string
  reactome_sig[[x]]$Description <- sub(pattern = "\n$", 
                                       replacement = "", 
                                       x = reactome_sig[[x]]$Description)
}
reactome_sig[[p]] %>%
  dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  DT(.,"Enriched pathways")
  # kable() %>%
  # kable_styling(bootstrap_options = c("striped", "hover")) %>%
  # scroll_box(height = "600px")

Dot plot

react_dot=list()
upset=list()
for (i in 1:length(fc)) {
  x <- fc[i] %>% as.character()
  react_dot[[x]] <- ggplot(reactome_sig[[x]][1:12, ]) +
  geom_point(aes(x = GeneRatio, y = reorder(Description, GeneRatio), colour = logFDR, size = Count)) +
  scale_color_gradient(low = "dodgerblue3", high = "firebrick3", limits = c(0, NA)) +
  scale_size(range = c(1.5,5)) +
  ggtitle("Reactome Pathways") +
  ylab(label = "") +
  xlab(label = "Gene Ratio") +
  labs(color = expression("-log"[10] * "FDR"), size = "Gene Counts")
  ggsave(filename = paste0("react_dot_", x, ".svg"), plot = react_dot[[x]] + pub, path = here::here("2_plots/reactome/"), 
       width = 250, height = 130, units = "mm")
  
  upset[[x]] <- upsetplot(x = reactome[[x]], 9)
  ggsave(filename = paste0("upset_react_", fc[i], ".svg"), plot = upset[[x]], path = here::here("2_plots/reactome/"))
}

react_dot[[p]]

Version Author Date
d578f46 Ha Manh Tran 2023-01-21
159f352 tranmanhha135 2023-01-21
4d51a4e tranmanhha135 2023-01-20
691cf34 Ha Manh Tran 2023-01-20
3119fad tranmanhha135 2022-11-05

Upset

upset[[p]]

Version Author Date
d578f46 Ha Manh Tran 2023-01-21
159f352 tranmanhha135 2023-01-21
691cf34 Ha Manh Tran 2023-01-20
3119fad tranmanhha135 2022-11-05

FC=1.1

p=p+1

Enriched pathways

reactome_sig[[p]] %>%
  dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  DT(.,"Enriched pathways")
  # kable() %>%
  # kable_styling(bootstrap_options = c("striped", "hover")) %>%
  # scroll_box(height = "600px")

Dot plot

react_dot[[p]]

Version Author Date
d578f46 Ha Manh Tran 2023-01-21
159f352 tranmanhha135 2023-01-21
4d51a4e tranmanhha135 2023-01-20
691cf34 Ha Manh Tran 2023-01-20
3119fad tranmanhha135 2022-11-05

Upset

upset[[p]]

Version Author Date
d578f46 Ha Manh Tran 2023-01-21
159f352 tranmanhha135 2023-01-21
691cf34 Ha Manh Tran 2023-01-20
3119fad tranmanhha135 2022-11-05

FC=1.5

p=p+1

Enriched pathways

reactome_sig[[p]] %>%
  dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  DT(.,"Enriched pathways")
  # kable() %>%
  # kable_styling(bootstrap_options = c("striped", "hover")) %>%
  # scroll_box(height = "600px")

Dot plot

react_dot[[p]]

Version Author Date
d578f46 Ha Manh Tran 2023-01-21
159f352 tranmanhha135 2023-01-21
4d51a4e tranmanhha135 2023-01-20
691cf34 Ha Manh Tran 2023-01-20
3119fad tranmanhha135 2022-11-05

Upset

upset[[p]]

Version Author Date
d578f46 Ha Manh Tran 2023-01-21
159f352 tranmanhha135 2023-01-21
691cf34 Ha Manh Tran 2023-01-20
3119fad tranmanhha135 2022-11-05

Export Data

# save to csv
writexl::write_xlsx(x = reactome_all, here::here("3_output/reactome_all.xlsx"))
writexl::write_xlsx(x = reactome_sig, here::here("3_output/reactome_sig.xlsx"))

sessionInfo()
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=English_Australia.utf8  LC_CTYPE=English_Australia.utf8   
[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C                      
[5] LC_TIME=English_Australia.utf8    

time zone: Australia/Adelaide
tzcode source: internal

attached base packages:
[1] stats4    grid      stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ReactomePA_1.44.0     enrichplot_1.20.1     org.Mm.eg.db_3.17.0  
 [4] AnnotationDbi_1.62.2  IRanges_2.34.1        S4Vectors_0.38.1     
 [7] Biobase_2.60.0        BiocGenerics_0.46.0   clusterProfiler_4.8.3
[10] Glimma_2.10.0         edgeR_3.42.4          limma_3.56.2         
[13] ggrepel_0.9.3         ggbiplot_0.55         scales_1.2.1         
[16] plyr_1.8.8            DT_0.29               pheatmap_1.0.12      
[19] cowplot_1.1.1         pander_0.6.5          kableExtra_1.3.4     
[22] lubridate_1.9.2       forcats_1.0.0         stringr_1.5.0        
[25] purrr_1.0.1           tidyr_1.3.0           ggplot2_3.4.3        
[28] tidyverse_2.0.0       reshape2_1.4.4        tibble_3.2.1         
[31] readr_2.1.4           magrittr_2.0.3        dplyr_1.1.2          

loaded via a namespace (and not attached):
  [1] splines_4.3.1               later_1.3.1                
  [3] bitops_1.0-7                ggplotify_0.1.2            
  [5] polyclip_1.10-4             graph_1.78.0               
  [7] lifecycle_1.0.3             rprojroot_2.0.3            
  [9] lattice_0.21-8              MASS_7.3-60                
 [11] crosstalk_1.2.0             sass_0.4.7                 
 [13] rmarkdown_2.24              jquerylib_0.1.4            
 [15] yaml_2.3.7                  httpuv_1.6.11              
 [17] DBI_1.1.3                   RColorBrewer_1.1-3         
 [19] abind_1.4-5                 zlibbioc_1.46.0            
 [21] rvest_1.0.3                 GenomicRanges_1.52.0       
 [23] ggraph_2.1.0                RCurl_1.98-1.12            
 [25] yulab.utils_0.0.9           tweenr_2.0.2               
 [27] rappdirs_0.3.3              git2r_0.32.0               
 [29] GenomeInfoDbData_1.2.10     tidytree_0.4.5             
 [31] reactome.db_1.84.0          svglite_2.1.1              
 [33] codetools_0.2-19            DelayedArray_0.26.7        
 [35] DOSE_3.26.1                 xml2_1.3.5                 
 [37] ggforce_0.4.1               tidyselect_1.2.0           
 [39] aplot_0.2.1                 farver_2.1.1               
 [41] viridis_0.6.4               matrixStats_1.0.0          
 [43] webshot_0.5.5               jsonlite_1.8.7             
 [45] ellipsis_0.3.2              tidygraph_1.2.3            
 [47] systemfonts_1.0.4           tools_4.3.1                
 [49] ragg_1.2.5                  treeio_1.24.3              
 [51] Rcpp_1.0.11                 glue_1.6.2                 
 [53] gridExtra_2.3               xfun_0.39                  
 [55] here_1.0.1                  DESeq2_1.40.2              
 [57] qvalue_2.32.0               MatrixGenerics_1.12.3      
 [59] GenomeInfoDb_1.36.3         withr_2.5.0                
 [61] fastmap_1.1.1               fansi_1.0.4                
 [63] digest_0.6.33               timechange_0.2.0           
 [65] R6_2.5.1                    gridGraphics_0.5-1         
 [67] textshaping_0.3.6           colorspace_2.1-0           
 [69] GO.db_3.17.0                RSQLite_2.3.1              
 [71] utf8_1.2.3                  generics_0.1.3             
 [73] data.table_1.14.8           graphlayouts_1.0.0         
 [75] httr_1.4.7                  htmlwidgets_1.6.2          
 [77] S4Arrays_1.0.6              scatterpie_0.2.1           
 [79] graphite_1.46.0             whisker_0.4.1              
 [81] pkgconfig_2.0.3             gtable_0.3.4               
 [83] blob_1.2.4                  workflowr_1.7.1            
 [85] XVector_0.40.0              shadowtext_0.1.2           
 [87] htmltools_0.5.5             fgsea_1.26.0               
 [89] ggupset_0.3.0               png_0.1-8                  
 [91] ggfun_0.1.3                 knitr_1.44                 
 [93] rstudioapi_0.15.0           tzdb_0.4.0                 
 [95] nlme_3.1-163                cachem_1.0.8               
 [97] parallel_4.3.1              HDO.db_0.99.1              
 [99] pillar_1.9.0                vctrs_0.6.3                
[101] promises_1.2.0.1            evaluate_0.21              
[103] cli_3.6.1                   locfit_1.5-9.8             
[105] compiler_4.3.1              rlang_1.1.1                
[107] crayon_1.5.2                labeling_0.4.3             
[109] fs_1.6.3                    writexl_1.4.2              
[111] stringi_1.7.12              viridisLite_0.4.2          
[113] BiocParallel_1.34.2         munsell_0.5.0              
[115] Biostrings_2.68.1           lazyeval_0.2.2             
[117] GOSemSim_2.26.1             Matrix_1.6-1               
[119] hms_1.1.3                   patchwork_1.1.3            
[121] bit64_4.0.5                 KEGGREST_1.40.0            
[123] SummarizedExperiment_1.30.2 igraph_1.5.1               
[125] memoise_2.0.1               bslib_0.5.1                
[127] ggtree_3.8.2                fastmatch_1.1-4            
[129] bit_4.0.5                   downloader_0.4             
[131] ape_5.7-1                   gson_0.1.0